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provided that 
IQ, + rnhr1) - (J1 + mh2)l 02 - mg (h - rl) > 0 (< (I) (,i 't) 

According to the results in paragraph 4, the inequality (5.4) also defines the stability 
condition for the rotation of a top on a plane with high viscous friction if the above- 
mentioned air resistance is taken into account in addition to the friction against the plane. 
We note that, unlikeinequality (5.3), which is valid for any value of the coefficient of 
friction not equal to zero or infinity, inequality (5.4) is only valid when the value of this 
coefficient is fairly large. In the general case, the stability of the rotation of a top on 
a plane with friction allowing for air resistance is determined by a rather cumbersome in- 
equality and depends on the ratio of the coefficients of sliding frictionandtheairresistance. 
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IMPACTS IN A SYSTEM WITH CERTAIN UNILATERAL COUPLINGS* 

A.P. IVANOV 

The characteristics of the dynamics of a system with ideal unilateral 
couplings resulting from the possibility of a simultaneous impact against 
two or more couplings are studied. 

It is shown that a correct definition of an impact impulse during 
repeated impact is only possible in exceptional cases, that is, if the 
couplings are orthogonal or theimpactis of an absolutely inelastic nature 
(in spite of the elasticity of each coupling individually). In the 
general case a percussive impulse does not possess the property of a 
continuous dependence on the initial conditions and the number of surfaces 
of discontinuity in phase space increases rapidly as the number of 
repetitions of the impact increases. In view of this, the problem of 
determining the post-impact motion in systems with a large number of 
unilateral couplings is of a stochastic nature. 

The equations of motion are regularized in the case of orthogonal 
couplings and absolutely elastic collisions. Examples are considered 
which show the effect of the geometric and elastic properties of the - - 
couplings on the motion of certain mechanical systems. 
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1. Let a system of solids be described by the Lagrange function 

L =‘T -j- U, T = %q’A (4 q’*t U=U(q), q=lP (1.1) 

and k <n frictionless couplings qj>O, j = 1, . . ..k. 
If there are no impacts on the couplings the motion is described by the equations 

aL --= 
aq R (1.2) 

where R,=O when qj#O (j=l,..., k), l&=...=R,=O. 
If, at a certain instant of time, it turns out that p;c = 0 (a EIC {l,...,k}) and qai < 

0 for a certain u'EZ, there is an impact on the system against the coupling qtr. 
In the case when I consists of a single element, the impact can be described directly 

by means of classicalstereomechanicaltheory /l/ which is based on the hypothesis of a 
vanishinglysmalldurationofacollision. The generalized coordinates do not change during 
an impact and the pre- and post-impact values of the generalized velocities are linked by the 
relationships 

(q", ejh = (q’-, e& iEI, qa’+ = - x4,‘-, a E I 

where ejis a row of zeros with a unity in the j-th position and the scalar 
defined with the aid of the kinetic energy matrix of the system: 

(u,v),=uA (q)vT, u, VER” 

In the case of a single element set I, Eqs.ll.3) correctly define the 
the functions q’- and q which also serves as a basis for the adoption of 
stereomechanics. 

(l-3) 

product (,)g is 

(1.4) 

values of q'+ in 
the assumptions of 

Relationships (1.3) can also be used to describe a multiple impact /2/. This definition 
will, however, be incorrect as the following simple example shows. 

Let a uniform sphere strike a dihedral angle of magnitude Vgt, moving, before the impact 
parallel to its bisector plane (Fig.1). In an absolutely elastic impact the sphere, having 
struck one edge of the angle , rebounds parallel to its other edge. According to the formal 
definition, it must rebound in the bisector plane. 

I 
second group which express the elastic properties of the couplings. 
In spite of the fact that, for a single impact, these relationships 

(3 -1 
of them which expresses the absence of friction, also remains 

I 

& 

An analysis of relationships (1.3) shows that the first group 

valid during a multiple impact /3/ which cannot be said of the 

\ 
\ i 

describe the properties of certain elastic media, in the case of 
a multiple impact they lose any physical foundation, generally 
speaking. The reason for this is concealed in the fact that, in 

\ the case of non-orthogonal generalized coordinates q , the matrix 
A (p) is non-diagonal /4/ and the change in the generalized 
velocity qa’ upon impact depends, by virtue of (1.21, not only on 
R, but also on Rg, fl # a, a, $ E I. 

Fig.1 
In fact, by solving (1.2) for the generalized accelerations, 

we obtain q” = RAwl+. .., where the terms which have not been 
written out do not contain the reactions of the constraints. The independence of qa” from 
Rp when a# @ is expressed by the condition 

Iv&&s = 0 for qa = qe = 0, a, BE 1 (1.5) 

where Ma6 are the elements of the matrix A-' (9). 

0x1 the other hand, the vector Nj = e,A-l is orthogonal to the plane qj = 0 in the 
sense of definition (1.4), since 

(N,, e& = ejAblAeiT = e,e,T = 6$, 

BY noting that 

(Narr Ne),, = %AmlebT = M,B (‘4 

we arrive at the conclusion that relationship (1.5) expresses the orthogonality of the planes 

%z=O, $3=0 at their points of intersection. 
When conditions (1.5) are satisfied,themultiple impact equations split up: the change 

in the generalized velocity qa’ only depends on the reaction of the same coupling. When 
this is so, Eqs.(l.3), which are a generalizationofstereomechanical theory to the case of 
impact against several couplings , correctly determine the impact pulse. 

If, however, conditions (1.5) are not satisfied, then, in real physical models, the 
impact pulse undergoes significant changes when the initial conditions are changed by a 
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magnitude of the order of the elastic deformations. 
In order to illustrate this, let us investigate the impact of an absolutely hard sphere 

against a dihedral angle of magnitude a (Fig.2.a) which is formed by half-spaces with the 
elastic properties of a Kelvin-Voigt /l/ medium 

Eli = 'l"i + PC& (I == 1, 3) (I 7) 

where e, is the normal deformation of the corresponding half-space, and R, is the normal stress 
(the tangential stresses are equal to zero: frictionless constraints are considered). 

The equations of motion of the sphere have the form 

mel" = --R, + R, COS a, me," = R, COS a - H, (1 8) 

where the force Ri is equal to zero when ei,<o and, when ei >O, it is determined by formula 
(1.7). 

-1 L7 I r 
b 

Fig.2 Fig.3 

When COS~S;O (the planes are non-orthogonal), a dependence of the intersection of the 
generalized accelerations on reactions of different kinds, which has been noted above, appears 
Fig.Pb shows the results of a numerical integration of system (1.8) for the values m=l,a= 
50°, B= iO',q = l,p= 0.22 (which corresponds to a value for the coefficient of restitution of 
X = 0.7 and to an initial velocity of the centre of the sphere U= 1 (in the case of a simple 
single impact, the percussive deformation is approximately equal to unity). The initial 
displacement of the centre of the sphere from the position in which it is simultaneously in 
contact with both edges of the angle (Fig.Za) is plotted along the abscissa while the magnitude 
of the angle of reflection fik and the modulus of the velocity of the sphere at the end of the 
impact, i.e. at the moment when %,,G O,e,,,'<O, are plotted along the ordinate. 

It follows from these results that the values flk= iOO,vk= 0.5 which are predicted by 
system (1.3) are not realized under any initial conditions. Moreover, if the deformations due 
to the impact are considered to be negligibly small, Ipl>i, the shock pulse has two different 
values depending on the sign of p . 

2. Let relationships (1.5) be satisfied for Z = {1,...,k}, i.e. all the unilateral 
constraints aremutually orthogonal and, furthermore, let xa = 1, a E I. 

As has been shown in /5/, Eqs.(l.2) and (1.3) can be regularized in the case when k = 1, 
x = 1: they can be replaced by the Lagrange equations for a certain auxiliary system which is 
free from constraints and has continuous phase trajectories. In order to do this, it is first 
necessary to make the substitution of the generalized coordinates q+Q in order that the 
plane q1 = 0 should transform into Qr = 0 and the vectors N, = e,A-l(Q) and e, when 91 = 0 
should be found to be collinear. After this an auxiliary system is defined in the phase space 
ZP (without the constraint Qx 20) by a Lagrange function of the form 

L* (Qt Q’) = L (I QI I, Qss . . . . Qnv Q-1 

The trajectories of the initial system in configurational space can be obtained from the 
trajectories of the auxiliary system bymeansof a mirror reflection in the Q, = 0 plane of 
that part of them for which Qr < 0 (Fig.3a). 

An analogous construction is also applicable in the case being considered of k>i 
mutually orthogonal constraints. Here, it is also first necessary to make a replacement of 
the variables such that the planes CA, = 0 transform into Qe = 0 and the vectors N, when 
Q, = 0 (j = 1,. . ., k) are collinear with &. (the existence of such a substitution is obvious 
from geometrical considerations). 

The auxiliary system is defined in the phase space Ran by the Lagrangian 

L*(Q,Q’)=L(IQ,I,...,IQ,I,Qk+lr...,Qn,Q’) (2.1) 

The link between the trajectories of the two systems is established by means of a certain 
number of mirror reflections in the coordinate planes (Fig.3b for k = 2). When this is done, 
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the smoothness of the auxiliary trajectories automatically implies that the impact Eqs.(l.3) 
are satisfied. 

In order to illustrate this method let us consider the motion of a material point of unit 
mass and weight in a vertical plane on or above a certain piecewise-smooth curve J = f (4 
where the J-axis is vertical. If f = C,, then, by putting ql= Y -f(4, we obtain a system with 
a single unilateral constraint which has been investigated in /S/. If the curve has angular 
points such as, for example 

fl(& sdzl 
&) = { fn(z), 2 > z0 

fl (4 = fa hl), fl’ bd < fl’ h3h f1,z E Cl 

the substitution ql=y--f(z) in (1.1) leads to a discontinuous kinetic energy. Nevertheless, 
this system can be written in the form of (1.1) but now with two unilateral constraints by 
putting, in this case, q1 = y -fl(z),qs = Y -f2(d. The Lagrangian (1.1) has the form 

L = I-/* (z.2 + Y’? - Y = I/* w,?’ - flY 191.a (1 + ft’? - a, L (1 + (2.2) 

f1’fa’) + (1 + fl’? 9**2 1 - (a + fd 

The angle a between the lines ql= 0 and q*= 0 is defined by the relationship (since a 
makes the angle between N, and N, up to n) 

-(N,,W_ --Mm coSa=---= 
- (1 + fl'h') 

I Nl I I Na I (M1lM&” (1 + /I’+ (1 + f*")"' 

i.e.a is identical to the linear angle between the curves y=fl(4 and Y=~~(J). 

Condition (1.5) appears as 
fl 6%) fa 6%) = --1 (3.3) 

Since the values of fl(z) when s>zo and fe(z) when S<ZO have no effect on the motion 
of the point, it is possible, when condition (2.5) is satisfied, to redefine them in such a 
way that it turns out that fl’fz’ = --1, fl,% E Cl. The Lagrange function of the auxiliary system has 
the form 

L = I/* (fi’ - flY h’p (1 + f,‘? + (i + fl’9 q.2’*1 - I q1 I - fl 
fl,l = f1,a (49 h (4 - fl (4 = I h I - I 42 I 

The equations of motion of system (2.4) are written, when ql# 0, q2# 0, in the form 

Q1" + sgn 91 (1 + h"s'Y = 0, Pa" + sgn q* (1 + fi” j’9 = 0 

2’ = fa’ u + f,T1 (A’ w ‘I1 - q** s&m na) 

(3.4) 

(2.5) 

If the functions fi and fn are linear and fl= -asl(~--d, fa= a(+--4 Eqs.(2.5) split up 
and are rapidly integrated. The change in each of the coordinates is periodic andthemagnitude 
of the periods zi depends on the initial conditions, 71 = 4 (2Ei)% Ei = l/rql'm -I- I &'I (i = i,3). The 
trajectories of the auxiliary system in configurational space are analogous to Lissajous 
figures: if rl and z, are comparable, these trajectories are closed. Otherwise, they are every- 
where dense in the rectangle I--E,, B,]x I-E,,EJ. 

In the general case Eqs.(2.5) admit of T-periodic solutions for which z = zo, q1 = qs - 
‘/,t (V$T - I t I) when I t I < V,T (Fig.4a). Let us investigate, to a first approximation, the 
stability of these particular solutions with respect to the variables &=z-zo,4. 

i ’ 
a' b 

Fig.4 

P’ x 

Fig.6 Fig.5 
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In comparing the equations in variations, one should take account of their different form 
when qlqB 3 0 and qlq,<O: in the first case the magnitude of ~'a is of the second order of 
smallness while, in the second case (motion in the interval between collisions with the first 
and the second curves, if these moments are not identical) , the motion occurs during an interval 
of time At of the first order of smallness. Moreover, the values of the second derivatives 
in (2.5) are defined differently when /ql)>lqS/ and l~11<l~2/. 

For the fundamental matrix of the solutions, one has the expression 

The necessary stability condition, 0<~D<4 has the form 

-1 < 2h (X, CD&X a" + x* SBC CL_) < 0, tg a" = a 

where h is the height of the upward jump of the point in the periodic motion investigated 
(Fig.la) and x1 and x, are the curvatures of the curves fl and f, at the point Q. 

We note that, in the previously discussed case fin = fe’=O, the solutions ql= 9% are 
unstable in view of the nature of the trajectories which has been described. Furthermore, if 
the total energy of the point is sufficiently large, the point will jump out of the well formed 
by the two perpendicular lines (Fig.4b) with a probability of unity. 

3. Now, suppose the orthogonality conditions (1.5) are not satisfied. Since the set of 
initial conditions which correspond to a multiple impact has a zero measure in phase space, 
it is of practical interest to studythe trajectorieslying close to this set. In the case of 
such trajectories a multiple impact is replaced by simple repeated collisions, during the 
investigation of which we shall neglect both the duration of each of them as well as the 
interval of time between them during a single multiple impact. We shall also assume that the 
coordinates qjQZI1 are orthogonal to qa(uEI) as a consequence of which qJ’ do not change 
during impact and it is sufficient to confine ourselves to a consideration of qa. 

Let I= {i,2}, x1=x9=x and let the angle between the planes ql= 0 and q2= 0 be equal 
to a. In an impact against one of the couplings the anglesofincidence and reflection are 
linked by the relationship stg$,+= ~-~ctg& and the angle of incidence upon the next impact 
against a second coupling is equal to B,= &'+a. The recurrence formula 

&??+l = a + F (&A F (if = arcctg (x-1 ctgz) .(.X1) 

holds for the subsequent collisions. 
Repeated collisions cease after the p-collision if the value of &,+l, defined in accordance 

with (3.1), turns out to be greater than n. Two versions of the possible mutual positionings 
of the graphs of y= a+ F(s) and y== are shown in Fig.6. 

In the first of the two cases, shown by the broken line, the trajectory, after a finite 
number of repetitive impacts, leaves the multiple impact zone. In order to determine the 
percussive pulse it is necessary in this case, in addition to the value of PO, also to specify' 
the number of the coupling against which the first collision occurs: if this is the first 
constraint, then p1 = & and, if it is the second, then Br = a - & (Fig.5). 

Calculations using formula (3.1) , carried out using the data for the example cited in 
paragraph 1: a = 50'. fi = 1(10,x = 0.7,lead to the following values: when the first impact is against 
the first ooupling $k = 28.3“ (four repetitiveimpacts 1 i-2 iii, 2) but, when it is against the 
second coupling, -fik= 6.P (three repetitive impacts &t-l+ 2) which corresponds to the values 
of the unilateral limits in Fig.2b. 

In the second case shown in Fig.6 by the solid line, the sequence f)t,, I forany &,E lO,al, 

has an upper limit of p*,the asymptotically stable root of the equation a + F(x) = x. The 
impact is then analogous to a quasiplastic impact /6/ but differs from it in the fact that 
total extinction of the velocities ql’ and q8’ occurs after an infinitely short time. In this 
case a multiple impact is therefore similar to an absolutely inelastic impact in spite of the 
elastic nature of each of the constraints individually. 

In order to elucidate to which of these two types a multiple impact belongs, it is 
necessary to determine the minimum of the function y = a +-F(z)- z in the interval 10, xl. 
Since y' = x(xssings + cos*z)-' - **this minimum is attained provided that cosBx + x8sin*x = x 
and the case of an arresting impact is realized when the inequality 

2 tg a-< %-'A (1 - x) (3.2) 
is satisfied. 

The fact that conditions (3.21 are satisfied in the case of the example cited in paragraph 
2 means that the angular point is an unusual trap. Upon falling within the neighbourhood of 
this paint the moving point "adheres" to the vertex of the angle (Fig.4cf. If, however, 
condition (3.2) is not satisfied the point rebounds from the vertex of the angle along one of 
two directions depending on the sequence of repetitive collisions (Fi.g.4d). 

It may be shown in a similar way that only two situations are also possible when xl#xa: 
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either the number of repetitive impacts is bounded for any initial conditions or a multiple 
impact is of an arresting nature for any initial conditions. 

Hence, two types of double impact exist. The first of these involves orthogonal con- 
straints and an arresting impact is characterized by the possibility of correctly defining 
an impact pulse by means of conditions (1.3) (where, in the case of an arresting impact, it 
is necessary to assume that xf = 0). The second type is distinguished by a double value of 
the impact pulse depending on the geometry of the initial conditions with regard to the 
surface of bifurcation which corresponds to the point being incident precisely at the vertex 
of the angle. (This does not exclude values of the impact pulse from being identical for 
certain values of a and x. For example, the case a = xlm,mE 2,x = 1 also belongs to the 
first type). 

It is considerably more difficult to describe an impact against three or more couplings. 
The difficulty lies in the fact that if the parameters permit several repetitive collisions, 
surfaces of bifurcation exist in the region of the initial conditions which correspond to 
different variations of their alternation. For instance, when k = 3 and there are four 
repeated collisions, versions 1 + 3 -I- 2 -I- 3, 1 -I- 2 -I- 1 f 3, etc. are possible, in all a total 
of 24 versions. When the dimensionality increases, the number of different versions (when 
k = 5 and there are ten repeated impacts, there are more than a million of them) and, 
correspondingly, the number of possible values of the impact momentum transforms the problem 
of determining the latter, in principle, into a stochastic problem (in the sense of /7/): in 
order to determine the motion of a system after impact it is necessary to known the initial 
conditions with a practically unattainable accuracy. Such cases are not considered in this 
paper. Concurrent with this, the above-mentioned cases of the correct determination of the 
impact pulse: orthogonal constraints and an arresting impact, remain possible for any dimen- 
sionality. 

4. Let us study the effect of double impacts on a system of two heavy material points 
suspended on ideal threads, which act as unilateral couplings , and fastened by a wightless 
rod (Fig.7). 

Let ri,cpf(i= 1,2) be the polar coordinates of a point ml with 
respect to a system in which the pole is located at the point where 
the corresponding thread is fastened andthepolaraxisishorizontal. 
The system has three degrees of freedom and the Iagrangian (1.1) 
is written in the form 

5 mj I% fri’2 + r$pj’3 - gr, sin rp,], qj=bi-‘i>O 
i=z 

’ have been eliminated with the help of the relationships 

System (4.1), (4.2) has a position of stable equilibrium which 
6% 3 % ’ is determined from the conditions /0/ 

avlaql d 0, avlaq, 6 0, aviacp, = 0 
Fig.7 whence we obtain 

m~coscp,sincp,3_m,coscp,sincp,=0, ql=qt=O (4.3) 

Let us assume that, up to a certain instant of time, the system is in equlibrium and, 
then, the axis to which the threads are fastened is displaced downwards in an abrupt manner 
by a certain distance. This leads to a slackening of the threads and a subsequent double 
impact. It can be readily seen that, if upon such an impact the angles of incidence and 
reflection are equal to one another, i.e. 

c/q;+ = 9;-I& (4.4) 

the horizontal componentofthe impact momentum and its moment with respect to the centre of 
inertia of the system are equal to zero when condition (4.3) is satisfied. When this is so, 
the points will move along verticals. If the elastic properties of the threads are identical 
(x,=~=x), such a situation arises when the orthogonality condition (1.5) or the arresting 
impact condition (3.2) is satisfied. Under these conditions the angle a is defined by 
virtue of (1.6) as: 

cos a = Ml, (MnM*J" = 
co9 'pJ cos 'pa [(sin%pl + mJm,) (sin* ‘p4 + m,lm~)l-“I 

Consequently, the orthogonality condition means that, when the threads are tight, just 
one of them is perpendicular to the rod. 

In the general situation of the bifurcation of the impact momentum a double impact leads 
to swinging of the rod since condition (4.4) is not satisfied for just one of the two branches. 
Hence, the orthogonality of the couplings turns out to be a stabilizing factor in the problem 
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under consideration. 
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INVESTIGATION OF THE OSCILLATIONS OF ESSENTIALLY NON-LINEAR SYSTEMS 
WITH INTERNAL RESONANCE* 

V.G. VERETENNIKOV and I.A. KOROLEV 

Oscillations in systems which do not become linear when the small parameter 
becomes equal to zero are studied. It is assumed that the generating 
system contains odd-order resonances. Conditionally periodic solutions 
of the generating and complete systems are constructed with an accuracy 
of uptofirst order in the small parameter. The results obtained represent 
a further development of the theory of bifurcation of the growth of a 
cycle from a position of equilibrium. 

1, Let us consider an essentially non-linear quasi-autonomous system of 2n-th order 
differential equations 

uh' = ivkulc + A#Ivt + zl PLIulrl (h VY t) (1-f) 

vr’ = ii,‘; vk~~k, UP=V~PW~. . .upn", Ak=const 

where p is a small parameter. The functions Ukl are polynomials in uk, Vk (k = i,...,s) of 
an arbitrarilylargedegree, vanishingwhen u = v = 8, with coefficients conditionally t- 
periodic and represented by a generalized finite Fourier series. The series in the parameter 
M are absolutely convergent when its values are sufficiently small, and the point u = U ~8 
is a unique singularity in the domain of variation of u and v in question. 

we assume that the frequencies are connected by an odd-order resonance relation 

prv1 + . . . + PnV, = 0 
(pi > 0 (i = 1, . . ., n), p = Zp, = 2m + 1 (m = 1,2, . . .)) 

We note that when we have the internal odd-order resonance and no resonance relations 
of the same order connecting the eigenfrequencies with the frequencies of the conditionally 
periodic coefficients, we can reduce, to system (l.l), the arbitrary system of equations of 
perturbed motion with n pairs of the purely imaginary roots of the form 

. 
~k=-YkI/k+Xk (p-+xp+ . . ., y;= VkIk + yp-‘)+ yp+... 
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